
DATA ENGINEERING
A GUIDE FOR TOP BEST PRACTICES

eBook

TABLE OF
CONTENTS
1.

2.

3.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

Test your data

Test your ETL scripts

Practice data versioning

Don’t use single point of failure

Define clear success and failure criteria

Use fault-tolerant messaging system

Avoid hard-coding variables and paths

Write code using modular design

 Make searchability a priority

 Build and maintain notebooks

 Write tests for all the codes

 Optimize and test

 Structure for analysis

Introduction

Best 13 Practices for Data Engineering

Conclusion

.....3

.....4

.....4

.....4

.....4

.....4

.....5

.....5

.....5

.....6

.....6

.....6

.....6

.....6

.....7

.....7

Data engineering is one of the key steps
that can help your business become more
competitive in the data-driven economy.
It's not just about collecting and storing
data; it's also about transforming it, clean-
ing it, extracting additional information from
it, and making sense of it all.

The data engineering process, if done right
and with the right people, can be one of the
most profitable and powerful tools in an
organization's arsenal. Data is the new digi-
tal dominator, and as a result, organizations
that embrace and leverage it effectively will
almost certainly find an advantage over their
competitors.

Data Engineering process involves putting
raw data into a structured format, and
sometimes wringing as much value out of it
as possible to reduce the amount of data or
make it useful for machine learning models,
artificial intelligence systems like chatbots,
or even applications. The result is a
deployed solution that doesn’t require
external resources like support staff, but
enables human users to access their infor-
mation more easily and quickly.

INTRODUCTION

eBook | 03

Data engineering is fast-paced, and
provides significant return on investment
(ROI). Best practices of data engineering
are not limited to any one organization;
rather, these best practices should be
implemented in all organizations.

Test your data before you begin the story, and
make sure that you understand the correct
format of the data. You can use a tool such as
Excel or Python to test your data. If possible,
make sure that the data is provided in a
structured way and that it contains enough
information to be able to do the analysis.

13 BEST PRACTICES
FOR DATA ENGINEERING
1. TEST YOUR DATA

ETL (Extract, Transform, Load) is a term used to
describe the process of extracting data from
one source and transforming it into another
format. ETL can be done manually or with the
help of tools like MapReduce, Pig or Hadoop.
These tools make it easier to create custom
ETL processes by combining multiple steps
into one command line.

The code should be tested before deployment
as there are many possible errors that can
occur during runtime, such as exceptions
thrown from the code or invalid input parame-
ters. These errors can lead to outages or data
loss if not caught in time. When you do find
errors, make a step-by-step plan on properly
handling them and failures in your ETL scripts.

2. TEST YOUR ETL SCRIPTS

This is an essential practice for data engineer-
ing, and it is important to understand the
difference between a system and a dataset. A
system is something that is made up of multi-
ple pieces of software, hardware and data
sources. A dataset is a group of related
systems that are used together to solve one or
more problems.

Data versioning means that you create
versions of your datasets so that you can easily
create new versions or use older versions in
new ways. You should never delete old
versions unless they are no longer needed or
relevant to your current use cases.

You can also use versioning to audit your code
base and make sure that you don’t have any
anomalies in your data.

3. PRACTICE DATA VERSIONING

When building an application or service, it is
important to have multiple layers of redun-
dancy in place.

4. DON’T USE SINGLE POINTS OF
FAILURE IN YOUR ARCHITECTURE

eBook | 04

eBook | 05

A clear definition of success metrics will help
you define what is expected from each stage
of your data engineering process.

For example, it is important to define the
outcome of an ETL process as well as the
status of data cleansing activities like cleans-
ing bad data or cleaning duplicates.

The more layers of redundancy you have, the
less likely it is that something will go wrong
with your system and cause it to fail or
become unavailable for customers. Having
multiple layers of redundancy also helps with
performance testing and troubleshooting
issues if something does happen

5. DEFINE CLEAR SUCCESS AND
FAILURE CRITERIA

A messaging system helps you communicate
both internally and externally with other
departments in your organization about what
is happening with your project.

It also helps you track progress and identify
problems early on so that they can be resolved
quickly and efficiently. The messaging system
too is prone to failures that you need to be
prepared for.

6. USE A FAULT-TOLERANT
MESSAGING SYSTEM

There have been instances where engineers
use hard-coding variables and paths without
commenting an explanation or reference. This
makes the code difficult to work with in the
future.

For example, you see a script written to
extract data from an RDBMS table but only
belonging to some people from a department
of a company. Maybe those people were to be
shifted to some other department or maybe
they were the best performing employees or
any other reason.

When those specific employee ids have been
coded, the specific reason must be men-
tioned. If not, it is best to avoid hard-coding.

7. AVOID HARD-CODING
VARIABLES AND PATHS.

While designing architecture for your system,
ensure that the desired data is easily search-
able and retrievable.

You could set expectations about data
request workflow, define the workflow
according to timelines, create a template for
requests, and even automate requests that are
repetitive in nature. This will help you manage
your data requests well and keep searchability
a priority.

When these initial steps are taken care of, you
may measure and improve the workflow as
and when required on the go.

Keeping a record of all the applied processes
and their results will help in sharing them
quickly and conveniently. The records will
come in handy when you are looking to apply
the same processes or similar ones in a differ-
ent system. It will help you generate an idea of
what results could be expected.

Sharing these documentations will, needless
to say, be of great help to those working on
the same systems after you. Even you could
use them as your future references.

Testing all the codes whether simple or com-
plex is essential to avoid confusions and com-
plications in the future. Write tests for all the
functions, use a sample data set to run it
through the system. Once you get the output,
compare it with your expected output. If the
output matches your expectation, record the
results; if not, make amends and run the tests
again. Do not avoid testing the basic func-
tions, no matter how simple.

9. MAKE SEARCHABILITY A
PRIORITY

11. WRITE TESTS FOR ALL THE
CODES

10. BUILD AND MAINTAIN
NOTEBOOKS Make it habitual to test for your systems’

performance early and often. Optimize for
performance as you go. Step-wise testing and
optimization will help in boosting the perfor-
mance of your system.

By using indexing, avoiding loops, defrag-
menting data, optimizing queries and memory
and using several other tips, you can make
your system better.

eBook | 06

It is always better to keep things in separate
modules even if merging business logic and
technical functions seem handy initially. For
the long run, having separate modules will be
very beneficial.

You might want to make a different package
for the common functionalities in order to
reuse them, in addition to having separate
packages for different groups of functions.
When it comes to reusability, the common as
well as the distinct packages serve well.

8. WRITE CODE USING
MODULAR DESIGN

12. OPTIMIZE AND TEST

The goal of any business is to stay ahead in
competition and keep their return on invest-
ment increasing, or at least steady. Analytics
and reporting play a crucial role in the
achievement of the same. If systems are struc-
tured and made to evolve keeping analytics in
mind, it will prove to be beneficial for the
organization.

Building systems that collect, validate and
prepare high-quality data for analysis and
reporting drive better decision making.

Succinctly, best data engineering practices
comprise of keeping the codes simple, testing
all the functions, being prepared for failure,
documenting all designs for future reference,
and structuring systems keeping the end goal
in mind. Always keep in mind, to test more
than expected inputs and outputs and to be
consistent with metrics and logging.

With all the above discussed practices, one
can be sure of making progress in business
and putting raw data to good use. These will
help you create a data engineering pipeline
that is both robust and secure.

CONCLUSION

13. STRUCTURE FOR ANALYSIS

eBook | 07

Corporate Headquarters
1000 N West St, #1200
Wilmington, DE 19801

Get in touch
info@msrcosmos.com
www.msrcosmos.com

USA | Canada | UK | India | Austral ia

2000+ Global
Employees

300 Happy
Customers

4 Tech
Pillars

15+ Technology
Partnerships

20+ Offices across
4 continents

MSRcosmos is a fast-growing global IT services company with unmatched
capabilities across the service value chain of intelligent automation, cloud, data &
analytics, enterprise applications, and IT infrastructure.

“Promise delivered” is our brand proposition, orchestrated via staunch delivery
commitments, path-breaking solutions, highly differentiated talent, and a
methodical approach. This belief has enabled MSRcosmos to be a preferred
partner of choice for many customers across diverse industries in the USA, Europe,
India, and Australia.

